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1 Abstract

The edge set of a graphG is partitioned into two subsets EC∪ES. A tensegrity
framework with underlying graph G and with cables for EC and struts for ES

is proved to be rigidly embeddable into a 1-dimensional line if and only if G
is 2-edge-connected and every 2-vertex-connected component of G intersects
both EC and ES. Polynomial algorithms are given to �nd an embedding of
such graphs and to check the rigidity of a given 1-dimensional embedding.

2 Introduction

Tensegrity structures are pin-connected frameworks where some of the mem-
bers are cables or struts. Today, tensegrity structures interest researchers in
engineering, mathematical and biological communities.

The elements of tensegrity structures, namely cables and struts are char-
acterized by their abilities to sustain only one type of load, but being capable
to deform freely in the opposite direction. In comparison to the regular pin
connected rod structures, the �rst property does not present much disad-
vantage, as in most cases the structures are designed so that the allowed

∗Budapest University of Technology and Economics, Department of Computer Science
and Information Theory, and Center for Applied Mathematics and Computational Physics,
H-1521 Budapest, Hungary. Support of the Hungarian National Science Fund and the
National O�ce for Research and Technology (Grant number OTKA 67651) is gratefully
acknowledged.
†Tel-Aviv University, Department of Mechanics Materials and Systems, Faculty of En-

gineering, Tel-Aviv, Israel.

1



loads induce only one type of force in each of the rods. On the other hand,
the second property makes possible to alter the geometry of the structures
and thus to achieve unique technological properties. Controlling the geom-
etry of the static structures gives rise to a variety of practical applications
including foldable and deployable structures [2], smart structures, structures
adjustable to the environmental conditions [1] and many others. Additional
advantages of the tensegrity structures include signi�cant weight reduction
while not a�ecting the static performance and simpli�cation of the construc-
tion process. Over the past decades, numerous studies of the advantages and
the properties were performed, some of which are as follows:

In engineering, tensegrity structures provide e�cient solutions for appli-
cations like deployable structures [2, 3], shape-controllable structures, smart
sensors [4] and lightweight structures.

The biological community employs tensegrity structures as models under-
lying the behavior of a number of biological entities, such as the cytoskeleton
[5]. Adopting such models enables the biologists to interpret some observed
but previously unexplained natural phenomena.

The complexity of the behavior on one hand and the special properties
on the other are those providing the incentive for mathematical studies of
tensegrity structures [6, 7]. The main interest in this respect is concentrated
on the issues of checking rigidity [8, 9] and structural analysis of these struc-
tures.

A key problem in the design of tensegrity structures is the determination
of geometrical con�gurations where a given structure becomes rigid. This
problem, also referred to as the 'form-�nding problem' [10], does not possess
a general analytical solution, except for some special, relatively simple cases
[11].

The present paper addresses a combinatorial approach for treating one-
dimensional tensegrity structures, i.e. structures where all members are par-
allel. The paper establishes a theorem for checking the topological rigidity of
these structures, i.e. deciding whether for a given graph there exists at least
one rigid geometrical embedding. If yes, a graph-theoretical algorithm is pro-
vided to �nd a rigid embedding for the given frame topology. This can be
regarded as an alternative solution for the 'form-�nding problem', although,
for now, it is limited for one-dimensional structures. Additionally, an algo-
rithm for checking the rigidity of a structure with a given geometry is shown
to be equivalent to checking whether the corresponding graph is strongly
connected.
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For any rigid graph there is no one-dimensional singular embedding con-
�guration since for the later we need that the sum of the virtual work is
equal to zero, i.e., the displacement/velocity of a joint is perpendicular to
the corresponding rod, a situation that cannot take place in one-dimensional
systems.

It is shown that the methodology can partly be considered as a special
case of a more general theorem based on matroid theory [8], which raises the
possibility that in the future the method could be expanded for multidimen-
sional cases.

3 Condition for graph embeddability as rigid

one-dimensional framework

Let G = (V,E) be a �nite graph with vertex set V and edge set E and let
χ denote a bipartition E = EC ∪ ES. A function f : V (G) → R is called a
one-dimensional embedding of G if x 6= y implies f(x) 6= f(y).

A function g : V (G)→ R satisfying

|g(x)− g(y)|
{
≤ |f(x)− f(y)| if {x, y} ∈ EC

≥ |f(x)− f(y)| if {x, y} ∈ ES,
(1)

and
sign[g(x)− g(y)] = sign[f(x)− f(y)] ∀{x, y} ∈ E (2)

is called a motion with respect to the bipartition χ or shortly a χ-motion of
the embedded graph G. Such a χ-motion is trivial if there exists a constant
c ∈ R so that g(x) = f(x) + c for every x ∈ V (G).

In the terminology of the real one-dimensional tensegrity structures, the
vertices of a graph represent the junctions, while edges belonging to EC and
ES correspond to cables/struts respectively. The embedding function f(x)
indicates the location coordinate of junction x, while the motion function
g(x) indicates the new location coordinate of junction x, after the tensegrity
structure has been deformed. The requirements of Eq. (1) and (2) are inter-
preted as physical constraints for the distance between end junctions of the
cables and struts to become only smaller and larger respectively, while the
relative location between the two junctions remains unaltered.

A one-dimensional embedding f is called a one-dimensional rigid embed-
ding of G with respect to this bipartition, or shortly a one-dimensional rigid
χ-embedding if every χ-motion of it is trivial.
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A circuit C of the graph G is a mixed circuit with respect to a bipartition
χ, or shortly a χ-mixed circuit if neither C ∩ EC nor C ∩ ES is empty.

Theorem 1: A graph has a one-dimensional rigid χ-embedding if and only
if the graph is connected and every edge of it is contained by at least one
χ-mixed circuit.

Remark: Since each edge, representing a rod can be replaced by a pair
of edges, one representing a cable and one representing a strut, Theorem 1
essentially refers to tensegrity frameworks with all three types of elements.
Observe that if a framework consists of rods only then the condition of the
theorem reduces to the connectivity of the graph, a known condition de-
scribed in the mathematical literature [12].

Proof: I. Necessity. The connectedness is obvious � if G0 were a connected
component of a disconnected graph G then the function

g(x) =

{
f(x) + c0 if x ∈ V (G0)
f(x) otherwise

(3)

with c0 6= 0 would be a nontrivial χ-motion of G. Similarly, if the edge
e = {a, b} ∈ ES (or ∈ EC , respectively) were a bridge of G and G0 denotes
one of the components of G−e then the same function could be applied using
a value of c0 so that |g(b)−g(a)| must be greater (smaller, respectively) than
|f(b)− f(a)|.

Hence from now on we may suppose that G is connected and bridgeless.
Consider one of its 2-connected components G0 and suppose indirectly that
it has no χ-mixed circuits, that is, all of its edges are in, say, EC . Let x0 be a
vertex of V (G0) so that f(x0) is an internal point of the interval spanned by
the values {f(v)|v ∈ V (G0)}. Then g(x) = f(x0)+ c[f(x)−f(x0)] with some
c < 1 applied for x ∈ V (G0) and then extended by an appropriate constant
translation for the remaining elements of V (G) would de�ne a nontrivial χ-
motion of G. (If all of the edges of G0 were in ES then use the same argument
with c > 1.)

II. Su�ciency. If every edge of a connected graph G is contained in some
circuits then G is clearly bridgeless. Hence it is either 2-connected or has a
cactus-decomposition into 2-connected components. It is clearly enough to
prove the rigid embeddability for a single 2-connected component.

Recall that a graph is 2-vertex-connected if and only if it has no isolated
vertices and for every pair of its edges there exists a circuit containing both
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of these edges, see, for example, Theorem 3.3.4 in [8]. Hence, if the edge set
of a 2-vertex-connected graph intersects both EC and ES then every edge of
this graph is contained in some χ-mixed circuits.

Lemma 1. A single χ-mixed circuit has a one-dimensional rigid χ-
embedding.

Proof: We may suppose that struts and cables alternate in the circuit
(otherwise replace temporarily a maximum path of struts or cables with
a single strut (cable, respectively); after embedding this tensegrity frame-
work into the one-dimensional space one can readily �nish the original em-
bedding by �subdividing� some struts and cables into smaller ones). Let
[v0, v1, v2, . . . , vk−1, vk = v0] be a cyclic description of the vertices of the
χ-mixed circuit. Then

• Let f(v0) be an arbitrary real number and i = 0.

• If i = k − 1 then stop.

• If {vi, vi+1} ∈ EC then �jump to the right�, that is, de�ne f(vi+1) as an
arbitrary value greater than any of the values f(v0), f(v1), . . . , f(vi).

• If {vi, vi+1} ∈ ES then �jump to the left�, that is, de�ne f(vi+1) as an
arbitrary value less than any of the values f(v0), f(v1), . . . , f(vi).

• Increase the value of i by one and go to the second step.

Figure 1 shows an example of a mixed circuit and its embedding obtained
by means of this procedure:

In order to prove the rigidity of this embedding, consider a motion g(x)
of the obtained system. Without loss of generality we may suppose that
{v1, v2} ∈ ES, thus by Eq. (1), the following set of inequalities is satis�ed:

|g(v1)− g(v2)| ≥ |f(v1)− f(v2)|

|g(v2)− g(v3)| ≤ |f(v2)− f(v3)|

...

|g(vk)− g(v1)| ≤ |f(vk)− f(v1)| (4)

The de�nition of g(v) (Eq. 2) and the above synthesis procedure for {vi, vj} ∈
ES imply that g(vi) > g(vj) and f(vi) > f(vj), while those for {vi, vj} ∈ EC
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Figure 1: Example of a rigid embedding of a mixed circuit: (a) the mixed
circuit; (b) reducing the circuit to an alternating form; (c) rigid embedding
of the reduced mixed circuit; (d) the rigid embedding of the original circuit
(with the corresponding cable �subdivided�).

imply that g(vi) < g(vj) and f(vi) < f(vj). Therefore the above inequalities
can now be rewritten without using the absolute values:

g(v1)− g(v2) ≥ f(v1)− f(v2)

g(v2)− g(v3) ≥ f(v2)− f(v3)

...

g(vk)− g(v1) ≥ f(vk)− f(v1) (5)

Rearranging the terms in the above inequalities yields:

g(v1)− f(v1) ≥ g(v2)− f(v2) ≥ ... ≥ g(vk)− f(vk) ≥ g(v1)− f(v1) (6)
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Obviously, this set of inequalities can be resolved only if g(x) is trivial with
respect to f(x), which proves that f(x) is a rigid embedding. �

Lemma 2. Suppose that a 2-connected proper subgraph G′ of a 2-
connected graph G has already a one-dimensional rigid χ-embedding and
let [v0, v1, . . . , vk] be a path of G so that {v0, v1, . . . , vk} ∩ V (G′) = {v0, vk}.
Then this embedding can be extended to that of a subgraph containing G′

and this path. (Here k ≥ 1, hence we permit that a single edge is added
only.)

Proof: Without loss of generality we may suppose that the edges of the
path belong alternatingly to EC and ES, see the argument in the �rst para-
graph of the proof of Lemma 1. If k = 1 then simply insert the required
tensegrity element between the two end points which were already in �xed
positions. If k > 1 then

• Let i = 0.

• If i = k − 1 then stop.

• If {vi, vi+1} ∈ EC then �jump to the right�, that is, de�ne f(vi+1) as an
arbitrary value greater than any of the values {f(v0), f(v1), . . . , f(vi)}∪
{f(v)|v ∈ V (G′)}.

• If {vi, vi+1} ∈ ES then �jump to the left�, that is, de�ne f(vi+1) as an
arbitrary value less than any of the values {f(v0), f(v1), . . . , f(vi)} ∪
{f(v)|v ∈ V (G′)}.

• Increase the value of i by one and go to the second step.

The rigidity of the resulting embedding can be proved in a similar fashion
as it was done for Lemma 1. �

Now the proof of the su�ciency is obvious by considering the cactus-
decomposition ofG and realizing the embedding of the individual 2-connected
components as follows: Start with a mixed circuit as in Lemma 1 and then
extend it gradually, as in Lemma 2, with new paths (including the possibility
of single new edges as well). This is always possible, see, for example, the �rst
solution of Problem 6.33 in [13]. �

Figure 2 shows an example of realizing such an embedding of a graph.
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Figure 2: Example of a rigid embedding of a complex graph: (a) the rigid em-
bedding; (b) the corresponding graph; (c) example of a non-rigid embedding
of the same graph

The conditions of Theorem 1 are satis�ed if and only if the graph has nei-
ther bridges (which would be contained in no circuits) nor 2-vertex-connected
components fully in EC or ES. Hence a graph satis�es these conditions if and
only if it is 2-edge-connected and every 2-vertex-connected component of it
intersects both EC and ES. Using depth-�rst-search technique, one can de-
tect both 2-vertex-connectedness and 2-edge-connectedness in linear time,
see, for example, Section 5.3 of [14].
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4 Condition for rigidity of a given one-

dimensional framework

Consider a one-dimensional embedding F of a tensegrity framework. The
corresponding directed graph representationGF is de�ned so that the vertices
vi of GF correspond to the joints i of F , and a tensegrity element between
the joints i, j with f(vi) < f(vj) correspond to the edge e = {i, j} of GF ,
with an orientation from i to j if e is a cable and from j to i if e is a strut.

By Eq.(1), a function g(x) is a valid motion function with respect to GF

if:

g(h)− g(t) ≥ f(h)− f(t) for every e = ~(t, h) ∈ GF (7)

Theorem 2: A given one-dimensional tensegrity framework F is rigid if
and only if the corresponding directed graph GF is strongly connected.

Proof: I. Necessity. Let us suppose indirectly that GF possesses a directed
cut-set which separates GF into two connected subgraphs, Gh and Gt, con-
nected respectively to the head and the tail vertices of the edges belonging
to the cut-set. Then the function:

g(x) =

{
f(x) + c0 if x ∈ Gh

f(x) if x ∈ Gt
(8)

with c0 6= 0 would be a valid nontrivial motion of F .

II. Su�ciency. Any two vertices u, v ∈ V (GF ) belong to a common di-
rected circuit {v, v2, ..., u, ..., vk, v}. Applying Eq. (7) to the edges of the cir-
cuit yields a system of inequalities identical to Eq. (5). Again, this set of
inequalities implies that the members and the joints corresponding to the
circuit form a rigid framework not allowing relative displacement between u
and v. As the condition is satis�ed for any two joints of the framework, the
framework as a whole is also rigid. �

Strong connectedness can also be detected in linear time, see, for example,
Section 5.5 of [14].

It is interesting to note that Theorem 2 can be considered as a special
case of a more general theorem developed by the �rst author on the basis
of matroid theory. We recall Theorem 18.3.2 in [8], referring to tensegrity
frameworks of any dimension.
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Theorem 3: Let F be a tensegrity framework and suppose that the un-
derlying system F ′ is rigid (i.e. dynamically determined). Suppose that the
oriented matroid M(F ) is graphic and is described by a directed graph G.
Then F is rigid if and only if the tensegrity transformation of G is strongly
connected.

Recall that M(F ) in Theorem 3 is the oriented matroid represented by
the row vectors of the rigidity matrix of the tensegrity framework F , and
the tensegrity transformation of G reverses the orientation of the edges cor-
responding to struts.

In the one-dimensional case the rigidity matrix is actually the transposed
incidence matrix of F , where each column is multiplied by the length of the
corresponding member. Thus, in this case,M(F ) is always a graphic matroid,
determined by GF itself.

As a last remark one should emphasize that, unlike in case of bar-and-
joint frameworks, if a tensegrity framework (with a �xed topology and a �xed
tripartiton of its edge set into ER, EC and ES) has a rigid embedding then
the set of all of its rigid embeddings is open but not necessarily dense: the
complement of this set may have a positive measure. For example, joint 2 in
Figure 1(d) must be in the open intervall determined by joints 1 and 3.

5 Deriving all one-dimensional rigid topologies

Based on the theorems reported in the paper it is possible to develop a
method for �nding all the rigid topologies by applying the construction steps,
as appears below.

1. Start from the basic structure consisting of two parallel edges; one
belonging to ES and one to EC .

2. Edge splitting: any edge can be split into two edges connected by a new
vertex between them. One of the two edges is assigned to the same set
as the original edge, while the second edge can be assigned arbitrarily
to either ES or EC .

3. Connecting vertices: Add a new edge between any two existing vertices.
The new edge is arbitrarily assigned to ES or EC .
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4. Vertex merging: having two graphs obtained through applying steps
1-4, choose an arbitrary vertex at each of the two graphs and merge
them to yielding a new one.

Example of applying the above construction steps appears in Figure 3.

Figure 3: Some topologies constructed by applying the construction steps.
Each graph is obtained by applying one of the construction steps (marked
below) to the previous graph.

Theorem 3: A graph G possesses a 1-dimensional tensegrity rigid embed-
ding if and only if it can be obtained through applying the construction steps
listed above.

I. Su�ciency. It can easily be veri�ed that each construction step preserves
the necessary condition for a graph being tensegrity rigid (Theorem 1), i.e.,
each edge is contained in at least one mixed circuit.

II. Necessity. First, we de�ne a critical edge to be an edge that is the
only one of its type (belonging to either ES or to EC) within the 2-vertex-
connected component. For a given graph G, the following reduction rules
preserve the rigidity property of the graph. First we decompose the graph
into 2-vertex-connected components. If there exists a vertex of degree two and
the two edges that meet it are of the same type then replace them by one edge
of that type. Otherwise, if one of the edges is critical replace the two edges by

11



that type of edge, otherwise there is no restriction for the replacement edge
type. If all the vertices are of degree greater than two, delete arbitrarily a non
critical edge under the condition that it preserves the 2-vertex connectivity
of the component. If the reduced graph consists of only two parallel edges,
one cable and one strut then stop, the graph is rigid. Otherwise, delete these
parallel edges and continue the above steps on other components till you
reach the former graph. Obviously the reduction rules are the inverse to the
above construction steps, thus the necessary condition of Theorem 3 is proved
straightforwardly by showing that any graph satisfying Theorem 1, can be
reduced to the basic structure by means of the reduction rules.
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